Bức tranh mà hiện nay chúng ta có từ công trình của Oppenheimer như sau: trường hấp dẫn của ngôi sao làm thay đổi đường truyền của các tia sáng trong không-thời gian. Các nón ánh sáng - chỉ đường truyền trong không-thời gian của các chớp sáng được phát ra từ đỉnh của nón - sẽ hơi bị uốn vào phía trong, phía gần với bề mặt của sao. Điều này có thể thấy được theo quỹ đạo cong của tia sáng phát từ những ngôi sao xa trong quá trình nhật thực. Vì ngôi sao nặng đang co lại, nên trường hấp dẫn ở bề mặt của nó ngày càng mạnh và nón ánh sáng càng bị uốn cong vào phía trong. Điều này làm cho tia sáng ngày càng khó thoát khỏi ngôi sao, và ánh sáng sẽ ngày càng mờ đi và đỏ hơn đối với người quan sát từ xa. Cuối cùng, khi ngôi sao đã co tới một bán kính tới hạn nào đó, trường hấp dẫn ở bề mặt của nó trở nên mạnh tới mức nón ánh sáng bị uốn vào phía trong nhiều đến nỗi ánh sáng không thể thoát ra được nữa
![]() |
Khi ngôi sao đã co tới một bán kính tới hạn nào đó, trường hấp dẫn ở bề mặt của nó trở nên mạnh tới mức nón ánh sáng bị uốn vào phía trong nhiều đến nỗi ánh sáng không thể thoát ra được nữa. |
Để hiểu được điều mà bạn sẽ thấy nếu bạn đang quan sát sự co lại của một ngôi sao để tạo thành lỗ đen, thì cần nhớ rằng trong thuyết tương đối không có khái niệm thời gian tuyệt đối. Mỗi một người quan sát có độ đo thời gian riêng của mình. Thời gian đối với người ở trên một ngôi sao sẽ khác thời gian của người ở xa, do có trường hấp dẫn của các ngôi sao. Giả sử có một nhà du hành vũ trụ quả cảm ở ngay trên bề mặt một ngôi sao đang co lại vào phía trong của nó, cứ mỗi một giây theo đồng hồ của anh ta lại gửi về con tàu đang quay quanh ngôi sao đó một tín hiệu. Ở thời điểm nào đó theo đồng hồ của anh ta, ví dụ lúc 11 giờ, ngôi sao co lại dưới bán kính tới hạn - kích thước mà ở đó trường hấp dẫn bắt đầu mạnh tới mức không gì có thể thoát được ra, - và như vậy, các tín hiệu của nhà du hành không tới được con tàu nữa. Khi tới gần 11 giờ, các đồng nghiệp của nhà du hành quan sát từ con tàu thấy khoảng thời gian giữa hai tín hiệu liên tiếp do nhà du hành gửi về ngày càng dài hơn, nhưng trước 10 giờ 59 phút 59 giây hiệu ứng đó rất nhỏ. Họ chỉ phải đợi hơn một giây chút xíu giữa tín hiệu mà nhà du hành gửi về lúc 10 giờ 59 phút 58 giây và tín hiệu anh ta gửi về lúc đồng hồ anh ta chỉ 10 giờ 59 phút 59 giây, nhưng họ sẽ phải đợi vĩnh viễn viễn tín hiệu gửi lúc 11 giờ. Các sóng ánh sáng được phát từ bề mặt ngôi sao trong khoảng thời gian giữa 10 giờ 59 phút 59 giây và 11 giờ theo đồng hồ của nhà du hành sẽ được truyền qua một khoảng thời gian vô hạn, nếu đo từ con tàu. Khoảng thời gian giữa hai sóng ánh sáng liên tiếp tới con tàu mỗi lúc một dài hơn, do đó ánh sáng từ ngôi sao mỗi lúc một đỏ và nhợt nhạt hơn. Cuối cùng, ngôi sao sẽ mờ tối tới mức từ con tàu không thể nhìn thấy nó nữa; tất cả những cái còn lại chỉ là một lỗ đen trong không gian. Tuy nhiên, ngôi sao vẫn tiếp tục tác dụng một lực hấp dẫn như trước lên con tàu làm cho nó vẫn tiếp tục quay xung quanh lỗ đen.
Thực ra, kịch bản này không phải hoàn toàn là hiện thực vì vấn đề sau: Lực hấp dẫn càng yếu khi bạn càng ở xa ngôi sao, vì vậy lực hấp dẫn tác dụng lên chân nhà du hành vũ trụ quả cảm của chúng ta sẽ luôn luôn lớn hơn lực tác dụng lên đầu của anh ta. Sự khác biệt về lực đó sẽ kéo dài nhà du hành vũ trụ của chúng ta giống như một sợi mì hoặc xé đứt anh ta ra trước khi ngôi sao co tới bán kính tới hạn, tại đó chân trời sự cố được hình thành! Tuy nhiên, chúng ta tin rằng trong vũ trụ có những vật thể lớn hơn rất nhiều, chẳng hạn như những vùng trung tâm của các thiên hà, cũng có thể co lại do hấp dẫn để tạo thành các lỗ đen; một nhà du hành vũ trụ ở trên một trong các vật thể đó sẽ không bị xé đứt trước khi lỗ đen được tạo thành. Thực tế, anh ta sẽ chẳng cảm thấy gì đặc biệt khi đạt tới bán kính tới hạn, và có thể vượt điểm-không-đường-quay-lại mà không nhận thấy. Tuy nhiên, chỉ một ít giờ sau, khi vùng đó tiếp tục co lại, sự khác biệt về lực hấp dẫn tác dụng lên chân và đầu sẽ lại trở nên mạnh tới mức nó sẽ xé đứt người anh ta.
Công trình mà Roger Penrose và tôi tiến hành giữa năm 1965 và 1970 chứng tỏ, rằng theo thuyết tương đối rộng, thì cần phải có một kỳ dị với mật độ và độ cong không-thời gian vô hạn bên trong lỗ đen. Điều này khá giống với vụ nổ lớn ở điểm bắt đầu, chỉ có điều ở đây lại là thời điểm cuối của một vật thể cùng nhà du hành đang co lại. Ở kỳ dị này, các định luật khoa học và khả năng tiên đoán tương lai đều không dùng được nữa. Tuy nhiên, một người quan sát còn ở ngoài lỗ đen sẽ không bị ảnh hưởng bởi sự mất khả năng tiên đoán đó vì không một tín hiệu nào hoặc tia sáng nào từ điểm kỳ dị đó tới được anh ta. Sự kiện đáng chú ý đó đã dẫn Roger Penrose tới giả thuyết về sự kiểm duyệt vũ trụ - một giả thuyết có thể phát biểu dưới dạng “Chúa căm ghét sự kỳ dị trần trụi”. Nói một cách khác, những kỳ dị được tạo ra bởi sự co lại do hấp dẫn chỉ xảy ra ở những nơi giống như lỗ đen - nơi mà chúng được che giấu kín đáo bởi chân trời sự cố không cho người ngoài nhìn thấy. Nói một cách chặt chẽ thì đây là mới là giả thuyết về sự kiểm duyệt vũ trụ yếu: nó bảo vệ cho những người quan sát còn ở ngoài lỗ đen tránh được những hậu quả do sự mất khả năng tiên đoán xảy ra ở điểm kỳ dị, nhưng nó hoàn toàn không làm được gì cho nhà du hành bất hạnh đã bị rơi vào lỗ đen.
Có một số nghiệm của các phương trình của thuyết tương đối rộng, trong đó nó cho phép nhà du hành của chúng ta có thể nhìn thấy điểm kỳ dị trần trụi: như vậy anh ta có thể tránh không đụng vào nó và thay vì anh ta có thể rơi qua một cái “lỗ sâu đục” và đi ra một vùng khác của vũ trụ. Điều này tạo ra những khả năng to lớn cho việc du hành trong không gian và thời gian, nhưng thật không may, những nghiệm đó lại rất không ổn định; chỉ cần một nhiễu động nhỏ, ví dụ như sự có mặt của nhà du hành, là đã có thể làm cho chúng thay đổi tới mức nhà du hành không còn nhìn thấy kỳ dị nữa cho tới khi chạm vào nó và thời gian của anh ta sẽ chấm hết. Nói cách khác, kỳ dị luôn luôn nằm ở tương lai chứ không bao giờ nằm ở quá khứ của anh ta. Giả thuyết kiểm duyệt vũ trụ mạnh phát biểu rằng trong nghiệm hiện thực thì các kỳ dị luôn luôn hoặc hoàn toàn nằm trong tương lai (như các kỳ dị do quá trình co lại do hấp dẫn) hoặc hoàn toàn nằm trong quá khứ (như vụ nổ lớn). Người ta rất hy vọng một trong hai giả thuyết kiểm duyệt là đúng, bởi vì ở gần các kỳ dị trần trụi sẽ có thể chu du về quá khứ. Trong khi điều này thật tuyệt vời đối với các nhà viết truyện khoa học viễn tưởng thì nó cũng có nghĩa là cuộc sống của bất kỳ ai đều không an toàn: một kẻ nào đó có thể mò về quá khứ giết chết bố hoặc mẹ của bạn trước khi bạn được đầu thai!
Chân trời sự cố, biên của vùng không - thời gian mà từ đó không gì thoát ra được, có tác dụng như một màng một chiều bao quanh lỗ đen: các vật, tỷ như nhà du hành khinh suất của chúng ta, có thể rơi vào lỗ đen qua chân trời sự cố, nhưng không gì có thể thoát ra lỗ đen qua chân trời sự cố (cần nhớ rằng chân trời sự cố là đường đi trong không-thời gian của ánh sáng đang tìm cách thoát khỏi lỗ đen, và không gì có thể chuyển động nhanh hơn ánh sáng). Có thể dùng lời của thi sĩ Dante nói về lối vào địa ngục để nói về chân trời sự cố: “Hỡi những người bước vào đây hãy vứt bỏ mọi hy vọng!”. Bất kỳ cái gì hoặc bất kỳ ai, một khi đã rơi qua chân trời sự cố thì sẽ sớm tới vùng có mật độ vô hạn và, chấm hết thời gian.
Thuyết tương đối rộng tiên đoán rằng các vật nặng khi chuyển động sẽ phát ra sóng hấp dẫn - những nếp gợn trong độ cong của không gian truyền với vận tốc của ánh sáng. Những sóng này tương tự như các sóng ánh sáng, là những gợn sóng của trường điện từ, nhưng sóng hấp dẫn khó phát hiện hơn nhiều. Giống như ánh sáng, sóng hấp dẫn cũng mang năng lượng lấy từ các vật phát ra nó. Do đó, hệ thống các vật nặng cuối cùng sẽ an bài ở một trạng thái dừng nào đó bởi vì năng lượng ở bất cứ dạng vận động nào đều được các sóng hấp dẫn mang đi. (Điều này gần tương tự với việc ném một cái nút xuống nước. Ban đầu, nó dập dềnh khá mạnh, nhưng rồi vì các gợn sóng mang dần đi hết năng lượng của nó, cuối cùng nó an bài ở một trạng thái dừng). Ví dụ, chuyển động của trái đất xung quanh mặt trời tạo ra các sóng hấp dẫn. Tác dụng của việc mất năng lượng sẽ làm thay đổi quỹ đạo trái đất, làm cho nó dần dần tiến tới gần mặt trời hơn, rồi cuối cùng chạm mặt trời và an bài ở một trạng thái dừng. Tuy nhiên, tốc độ mất năng lượng của trái đất và mặt trời rất thấp: chỉ cỡ đủ để chạy một lò sưởi điện nhỏ. Điều này có nghĩa là phải mất gần một ngàn triệu triệu triệu triệu năm trái đất mới đâm vào mặt trời và vì vậy chúng ta chẳng có lý do gì để lo lắng cả! Sự thay đổi quỹ đạo của trái đất cũng rất chậm khiến cho khó có thể quan sát được, nhưng chính hiện tượng này đã được quan sát thấy ít năm trước trong hệ thống có tên là PSR 1913+16 PSR là tên viết tắt của một pulsar (pulsar là chuẩn tinh: một loại sao neutron đặc biệt có khả năng phát đều đặn các xung sóng radio). Hệ thống này gồm hai sao neutron quay xung quanh nhau và sự mất năng lượng do phát sóng hấp dẫn làm cho chúng chuyển động theo đường xoắn ốc hướng vào nhau
Trong quá trình co lại do hấp dẫn của một ngôi sao để tạo thành một lỗ đen, các chuyển động sẽ nhanh hơn nhiều và vì vậy tốc độ năng lượng được chuyển đi cũng cao hơn nhiều. Do vậy mà thời gian để đạt tới sự an bài ở một trạng thái dừng sẽ không quá lâu. Vậy cái giai đoạn cuối cùng này nhìn sẽ như thế nào? Người ta cho rằng, nó sẽ phụ thuộc vào tất cả các đặc tính của ngôi sao. Có nghĩa là, nó không chỉ phụ thuộc vào khối lượng và tốc độ quay, mà còn phụ thuộc vào những mật độ khác nhau của các phần tử khác nhau của ngôi sao và cả những chuyển động phức tạp của các khí trong ngôi sao đó nữa. Và nếu các lỗ đen cũng đa dạng như những đối tượng đã co lại và tạo nên chúng thì sẽ rất khó đưa ra một tiên đoán nào về các lỗ đen nói chung.
Tuy nhiên, vào năm 1967, một nhà khoa học Canada tên là Werner Israel (ông sinh ở Berlin, lớn lên ở Nam Phi, và làm luận án tiến sĩ ở Ireland) đã tạo ra một bước ngoặt trong việc nghiên cứu các lỗ đen. Israel chỉ ra rằng, theo thuyết tương đối rộng thì các lỗ đen không quay là rất đơn giản; chúng có dạng cầu lý tưởng và có kích thước chỉ phụ thuộc vào khối lượng của chúng; hai lỗ đen như thế có khối lượng như nhau là hoàn toàn đồng nhất với nhau.
Thực tế, những lỗ đen này có thể được mô tả bằng một nghiệm riêng của phương trình Einstein đã được biết từ năm 1917, do Karl Schwarzchild tìm ra gần như ngay sau khi tuyết tương đối rộng được phát minh. Thoạt đầu, nhiều người, thậm chí ngay cả Israel, lý luận rằng, vì các lỗ đen cần phải có dạng cầu lý tưởng nên chúng chỉ có thể được tạo thành từ sự co lại của đối tượng có dạng cầu lý tưởng. Mà một ngôi sao chẳng bao giờ có thể có dạng cầu lý tưởng được, nên nó chỉ có thể co lại để tạo thành một kỳ dị trần trụi mà thôi.
Tuy nhiên, có một cách giải thích khác cho kết quả của Israel mà Roger Penrose và đặc biệt là John Wheeler rất ủng hộ. Họ lý luận rằng, những chuyển động nhanh trong quá trình co lại có nghĩa là các sóng hấp dẫn do nó phát ra sẽ làm cho nó có dạng cầu hơn và vào thời điểm an bài ở trạng thái dừng nó có dạng chính xác là cầu. Theo quan điểm này thì một ngôi sao không quay, bất kể hình dạng và cấu trúc bên trong phức tạp của nó, sau khi kết thúc quá trình co lại do hấp dẫn đều là một lỗ đen có dạng cầu lý tưởng với kích thước chỉ phụ thuộc vào khối lượng của nó. Những tính toán sau này đều củng cố cho quan điểm này và chẳng bao lâu sau nó đã được mọi người chấp nhận.
Kết quả của Israel chỉ đề cập trường hợp các lỗ đen được tạo thành từ các vật thể không quay. Năm 1963 Roy Kerr người New Zealand đã tìm ra một tập hợp nghiệm của các phương trình của thuyết tương đối mô tả các lỗ đen quay. Các lỗ đen “Kerr” đó quay với vận tốc không đổi, có kích thước và hình dáng chỉ phụ thuộc vào khối lượng và tốc độ quay của chúng. Nếu tốc độ quay bằng không, lỗ đen sẽ là cầu lý tưởng và nghiệm này sẽ trùng với nghiệm Schwarzchild. Nếu tốc độ quay khác 0, lỗ đen sẽ phình ra phía ngoài ở gần xích đạo của nó (cũng như trái đất và mặt trời đều phình ra do sự quay của chúng), và nếu nó quay càng nhanh thì sự phình ra sẽ càng mạnh. Như vậy, để mở rộng kết quả của Israel cho bao hàm được cả các vật thể quay, người ta suy đoán rằng một vật thể quay co lại để tạo thành một lỗ đen cuối cùng sẽ an bài ở trạng thái dừng được mô tả bởi nghiệm Kerr.
Năm 1970, một đồng nghiệp và cũng là nghiên cứu sinh của tôi, Brandon Carter đã đi được bước đầu tiên hướng tới chứng minh suy đoán trên. Anh đã chứng tỏ được rằng với điều kiện lỗ đen quay dừng có một trục đối xứng, giống như một con quay, thì nó sẽ có kích thước và hình dạng chỉ phụ thuộc vào khối lượng và tốc độ quay của nó. Sau đó vào năm 1971, tôi đã chứng minh được rằng bất kỳ một lỗ đen quay dừng nào đều cần phải có một trục đối xứng như vậy. Cuối cùng, vào năm 1973, David Robinson ở trường Kings College, London đã dùng kết quả của Carter và tôi chứng minh được rằng ước đoán nói trên là đúng. Những lỗ đen như vậy thực sự là nghiệm Kerr. Như vậy, sau khi co lại do hấp dẫn, lỗ đen sẽ an bài trong trạng thái có thể quay nhưng không xung động. Hơn nữa, kích thước hình dạng của nó chỉ phụ thuộc vào khối lượng và tốc độ quay chứ không phụ thuộc vào bản chất của vật thể bị co lại tạo nên nó. Kết quả này được biết dưới châm ngôn: “lỗ đen không có tóc”. Định lý “không có tóc” này có một tầm quan trọng thực tiễn to lớn bởi nó hạn chế rất mạnh các loại lỗ đen lý thuyết. Do vậy, người ta có thể tạo ra những mô hình chi tiết của các vật có khả năng chứa lỗ đen và so sánh những tiên đoán của mô hình với quan sát. Điều này cũng có nghĩa là một lượng rất lớn thông tin về vật thể co lại sẽ phải mất đi khi lỗ đen được tạo thành, bởi vì sau đấy tất cả những thứ mà ta có thể đo được về vật thể đó chỉ là khối lượng và tốc độ quay của nó. Ý nghĩa của điều này sẽ được thấy rõ ở chương sau.
(còn nữa)