Chúng ta đều biết xây dựng một lý thuyết thống nhất hoàn chỉnh của vạn vật trong vũ trụ là một việc vô cùng khó khăn. Song thay vì, chúng ta đã đạt nhiều tiến bộ trong việc xây dựng nhiều lý thuyết riêng phần có khả năng mô tả một tập hợp giới hạn nhiều hiện tượng bằng cách bỏ qua các hiệu ứng khác hoặc xấp xỉ chúng bằng một số đại lượng. (Ví dụ, hóa học cho phép chúng ta tính tương tác của các nguyên tử mà không cần biết cấu trúc nội tại của hạt nhân nguyên tử). Nhưng cuối cùng mà nói, người ta luôn hy vọng tìm ra một lý thuyết thống nhất hoàn chỉnh đúng đắn bao trùm lên tất cả các lý thuyết riêng phần như những phép gần đúng và không cần điều chỉnh cho phù hợp với thực nghiệm bằng cách chọn lựa giá trị của một số đại lượng tùy tiện trong lý thuyết. Sự tìm kiếm một lý thuyết như thế được gọi là sự tìm kiếm “lý thuyết thống nhất của vật lý”.
Einstein đã để phần lớn những năm cuối đời để tìm một lý thuyết thống nhất, nhưng vô vọng vì thời điểm chưa chín mùi: lúc bấy giờ người ta đã có lý thuyết riêng phần của hấp dẫn, của điện từ nhưng người ta đã biết rất ít về lực hạt nhân. Hơn nữa Einstein lại phủ nhận thực tại của cơ học lượng tử, mặc dầu ông đóng vai trò quan trọng trong sự phát triển của cơ học lượng tử. Mà nguyên lý bất định chắc chắn lại là một đặc thù cơ bản của vũ trụ ta đang sống. Vì vậy một lý thuyết thống nhất thành công phải chứa đựng nguyên lý này.
Như tôi sẽ trình bày, hiện nay triển vọng để tìm ra một lý thuyết như thế rất sáng sủa bởi vì chúng ta đã biết về vũ trụ khá nhiều. Song cũng phải cảnh giác về một niềm quá tự tin - chúng ta trước đây cũng từng có nhiều lần bất chợt những tia sáng giả tạo như vậy. Ví dụ vào đầu thế kỷ này, chúng ta đã nghĩ rằng mọi việc có thể giải thích nhờ các tính chất của môi trường liên tục như tính đàn hồi, tính dẫn nhiệt. Sự phát hiện cấu trúc nguyên tử và nguyên lý bất định đã kết liễu dòng tư tưởng này.
Sau đó lại một lần nữa, năm 1928 nhà vật lý đoạt giải Nobel Max Born đã phát biểu với một nhóm đến tham quan trường đại học Gottingen: “Vật lý, như chúng ta đã quan niệm, sẽ kết thúc trong vòng 6 tháng”. Niềm tin của Max Born dựa trên cơ sở sự phát hiện bởi Dirac phương trình mô tả chuyển động của electron. Người ta nghĩ rằng một phương trình tương tự cũng sẽ mô tả chuyển động của proton, vốn là một hạt khác duy nhất được biết vào lúc bấy giờ, và điều đó có nghĩa là vật lý lý thuyết cáo chung. Nhưng sự phát hiện neutron và lực hạt nhân đã làm thay đổi tất cả. Dẫu nói lên điều này, tôi vẫn tin rằng đã có nhiều cơ sở cho một niềm lạc quan thận trọng rằng chúng ta hiện nay đang ở gần giai đoạn cuối trên quá trình tìm ra những định luật cơ bản của thiên nhiên.
Trước đây tôi đã mô tả lý thuyết tương đối rộng vốn là thuyết riêng phần về hấp dẫn và những lý thuyết riêng phần khác về các tương tác yếu, mạnh và điện từ. Ba tương tác sau có thể tổng hợp lại thành lý thuyết thống nhất lớn (GUT), lý thuyết này không hoàn chỉnh vì nó không bao hàm hấp dẫn và vì nó chứa một số đại lượng, như khối lượng tương đối của nhiều hạt khác nhau, mà chúng ta không tiên đoán được từ lý thuyết mà phải chọn để có được kết quả phù hợp với thực nghiệm. Khó khăn chủ yếu trong quá trình tìm kiếm một lý thuyết có khả năng thống nhất hấp dẫn với các tương tác khác là lý thuyết tương đối rộng - một lý thuyết “cổ điển”, có nghĩa là lý thuyết này không chứa đựng nguyên lý bất định của cơ học lương tử. Mặt khác, các lý thuyết riêng phần khác lại phụ thuộc thiết yếu vào cơ học lượng tử.
Vì vậy bước đầu tiên cần thiết là kết hợp lý thuyết tương đối rộng với nguyên lý bất định. Nguyên lý bất định đưa đến kết quả là “chân không” cũng chứa đầy các cặp ảo hạt và phản hạt. Những cặp này có một năng lượng vô cùng lớn và vì vậy chúng có một khối lượng lớn vô cùng theo phương trình nổi tiếng của Einstein E = mc2. Lực hút hấp dẫn của chúng sẽ uốn cong vũ trụ vào một kích thước vô cùng bé.
Tương tự như thế, những đại lượng vô cùng lớn vô nghĩa cũng xuất hiện trong các lý thuyết riêng phần khác, song trong tất cả các trường hợp, những đại lượng này đều có thể loại bỏ nhờ quá trình tái chuẩn hóa. Quá trình này loại bỏ những đại lượng vô cùng lớn bằng cách đưa vào những đại lượng khác cũng lớn vô cùng. Mặc dầu kỹ thuật đáng ngờ về mặt toán học nhưng tỏ ra hữu hiệu về mặt thực hành và được sử dụng trong các lý thuyết đó để đưa ra các tiên đoán lý thuyết phù hợp với thực nghiệm với một độ chính xác kỳ diệu. Song phép tái chuẩn hóa chứa một khiếm khuyết nghiêm trọng xét từ quan điểm đi tìm một lý thuyết hoàn chỉnh, bởi vì rằng theo phép này thì giá trị của các khối lượng và cường độ các tương tác không thể tiên đoán từ lý thuyết mà phải được chọn sao cho phù hợp với thực nghiệm.
Để đưa nguyên lý bất định vào lý thuyết tương đối rộng, chúng ta chỉ có hai đại lượng cần hiệu chỉnh: hằng số hấp dẫn và hằng số vũ trụ. Song điều chỉnh chúng cũng chưa đủ để loại trừ tất cả các đại lượng vô cùng lớn. Như vậy người ta đi đến một lý thuyết trong đó một số đại lượng, như độ cong của không - thời gian, quả là lớn vô cùng, song chúng ta phải quan sát và đo được chúng như những đại lượng hữu hạn hoàn toàn!
Vấn đề kết hợp lý thuyết tương đối rộng với nguyên lý bất định đã bị nghi ngờ trong một thời gian nhưng cuối cùng được xác nhận nhờ những tính toán chi tiết vào năm 1972. Bốn năm sau, một lời giải, gọi là “siêu hấp dẫn” được đưa ra. Ý tưởng của siêu hấp dẫn là kết hợp hạt spin 2 gọi là graviton, lượng tử truyền lực hấp dẫn, với những hạt mới khác có spin 3/2, 1, 1/2 và 0. Trong một ý nghĩa nhất định tất cả những hạt này có thể được xem là những trạng thái khác nhau của cùng một “siêu hạt”, như thế ta thống nhất được những hạt vật chất có spin 1/2 và 3/2 với những hạt truyền tương tác có spin 0, 1 và 2. Cặp ảo hạt/phản hạt có spin 1/2 và 3/2 sẽ có năng lượng âm, và như thế sẽ triệt tiêu năng lượng của các cặp ảo hạt có spin 2, 1 và 0. Điều này loại được nhiều đại lượng lớn vô cùng, song một số đại lượng như thế có thể còn sót lại. Nhưng những phép tính cần thiết để chứng minh rằng có còn sót lại một số đại lượng như thế hay không là quá khó và quá dài đến nỗi không ai sẵn sàng thực hiện chúng. Ngay cả với máy tính, người ta ước lượng cũng phải cần ít nhất 4 năm, và xác suất phạm một phép tính sai hoặc có thể nhiều hơn, là rất lớn. Vì vậy người ta dám tin rằng mình đã tính đúng chỉ khi nào có một người nào khác lặp lại những phép tính đó và cũng thu được một kết quả tương tự, và điều này xem chừng khó xảy ra.
(còn nữa)